International Economics Fall 2011
 Balance of Payments \& Introduction to FX Market

US housing market is still in depression...

Today's Plan

- Brief review of National Income Accounting (NIA)
- Balance of payments (BoP)
- Introduction to FX market
- Understand interest parity condition

National Income Accounts

- Closed economy:

Y $=\mathrm{C}+\mathrm{I}+\mathrm{G}$
C: private consumption - spending by private households on final goods and services
I: investment - spending on new capital goods and changes in inventories
G: government consumption and investment

- National product = National income
\square The reason for this equality is that every dollar used to purchase goods or services automatically ends up in somebody's pocket as income.
\square In reality, due to measurement errors, these two can be different, but still roughly the same.
- Open economy
$Y=C+I+G+(E X-I M) \quad$ (note: $E X-I M=N X$, or net exports)
Current account, CA, and NX = CA $=E X-I M=Y-(C+I+G)$

In the last decade, US consumption rose to 70% of its GDP

Expenditure and production in an open economy

$$
C A=E X-I M=Y-(C+I+G)
$$

- It says:
\square When production > domestic expenditure, including C, I and G, we have exports > imports, which implies current account >0
\square when a country exports more than it imports, it earns more income from exports than it spends on imports, thus net foreign wealth is increasing
- Conversely,
\square When production < domestic expenditure, we have exports < imports, which means current account <0
\square when a country exports less than it imports, it earns less income from exports than it spends on imports, thus net foreign wealth is decreasing

US has run persistent trade deficits since mid 1970s

US Current Account

\rightarrow

U.S. Current Account and Net Foreign Wealth, 1976-2006

Current account,
net foreign wealth (billions of dollars)

Source: U.S. Department of Commerce, Bureau of Economic Analysis, June 2007 release

What about Denmark?

Current Account Balance (\% GDP)

Roughly, the relative proportion of Denmark's GDP:
$C+I+G+C A=60 \%+20 \%+15 \%+5 \%$

How saving and current account are connected

- National Saving:

$$
S=Y-C-G
$$

- In a closed economy:
\square Since Y = C + I + G, so I = Y - C - G
\square So $S=I$, i.e., mathematically, national saving must equal investment in a closed economy
- In an open economy:
$\square \mathrm{Y}=\mathrm{C}+\mathrm{I}+\mathrm{G}+\mathrm{CA}$
\square Since $S=Y-C-G$, so $S=I+C A$
\square This means saving roughly equals investment plus revenue from net exports

Balance of Payments (BoP) Accounts

- BoP accounts are separated into 3 broad accounts:

1. Current Account includes:

- net value of goods trade
- net value of services trade
- net payments received

1. net foreign income, incl. interest, dividends \& profits from assets owned
2. unilateral transfers: for example, remittances, charity and foreign aid
3. Financial Account: accounts for flows of financial assets (financial capital).
4. Capital Account: flows of special categories of assets (capital): typically non-market, non-produced, or intangible assets like debt forgiveness, copyrights and trademarks. Very small.

Examples of BoP Accounting

- You (US consumer) bought a BMW (made by Germany) in San Francisco
- The German producer of BMW deposits the money in its bank account in San Francisco. The bank credits the account by the amount of the deposit.

BMW purchase
-\$50K
(current account)

Credit ("sale") of deposit in account by bank
+\$50K (financial account)

Example of BoP Accounting (cont.)

- You (US citizen) invest in Danish stocks by buying \$500 of Vestas stock through New York Stock Exchange (NYSE)
- Vestas' US subsidiary deposits the money in its California bank account. The bank credits the account by the amount of the deposit.
\qquad
Purchase of Vestas stock
(financial account)
Credit ("sale") of deposit in account by bank +\$500 (financial account)

How do the BoP accounts balance?

- To determine whether it should be a debit (-) or credit (+) in BoP account, look at the direction of money flow:
\square If it's money flowing into the country, it is recorded as credit or "+"
\square If it's money flowing out of the country, it's recorded as debit or "-"

U.S. Balance of Payments Accounts for 2006 (billions of dollars)

Capital Account
(4)
very small
-3.9

U.S. Balance of Payments Accounts for 2006 (billions of dollars, cont.)

Financial Account

(5) U.S. assets held abroad, excluding financial derivatives (increase -)

Of which:
Official reserve assets

Other assets
(6) Foreign assets held in U.S., excluding financial derivatives (increase +)

Of which:
$+2.4$

Official reserve assets
$+440.3$
Other assets
$+1,419.3$
(7) Financial derivatives, net

Balance on financial account
$[(5)+(6)+(7)]$
$+833.2$

Statistical discrepancy

$$
-17.8
$$

[sum of (1) through (7) with sign reversed]
Source: U.S. Department of Commerce, Bureau of Economic Analysis, June 15, 2007, release. Totals may differ from sums because of rounding.

A very important BoP relationship

- Due to the double entry of each transaction, the balance of payments accounts will balance by the following equation:
current account + financial account + capital account $=0$
Since capital account is often negligible, so roughly we have, current account $=$ - financial account

This means:

\square Any current account surplus should be matched by roughly equal amount of capital outflow
\square Any current account deficits should be matched by roughly equal amount of capital inflow

Balance of Payments (cont.)

- What is BoP in previous US example?
- US BoP $=-$ official reserve assets $=-(440.3+2.4)=-442.7$ billion
- If BoP is bigger than official reserve assets, which means not enough money can be borrowed from foreigners, BoP account is not balanced, or we say this country runs a BoP deficit.
- If a country's BoP deficit is very big or has accumulated no foreign exchange reserves to cover the deficit, this country will likely to suffer a BoP crisis.
- In the US' case, BoP account is balanced, because foreigners are willing to lend money to the US.
- Also, remember US dollar is international reserve currency, so foreign central banks are willing to hold US dollar, just like gold. Foreign central banks will hold US dollar so long as the dollar remains strong and stable (a big question mark these days)

U.S. Gross Foreign Assets and Liabilities, 1976-2006

Source: U.S. Department of Commerce, Bureau of Economic Analysis, June 2007

Introduction of FX Markets

The major players:

1. Commercial banks and other depository institutions: transactions involve buying/selling of deposits in different currencies for investment purposes, e.g., JP Morgan Chase, Deutsche Bank.
2. Corporations conduct foreign currency transactions to buy/sell goods, services and assets. The operations of these corporations often involve currency risk, e.g. oil companies.
3. Non-bank financial institutions (mutual funds, hedge funds, securities firms, insurance companies, pension funds) may buy/sell foreign assets for investment purpose.
4. Central banks: conduct official international reserves transactions. For example, the recent currency market intervention by Japanese central bank.

Characteristics of FX Market

- The size of FX market is huge
\square In 2007, averaged at $\$ 3.2$ trillion, per day!
\square Compared to international trade, the annual total world export value was $\$ 16$ trillion. In other words, one-year of world total exports only equals 5 days of FX trading value.
- Concentrated in five major centers:
\square London (the largest)
\square NYC, Tokyo, Frankfurt and Singapore
- Because these centers cover different time zones, so we have almost 24 hours of continuous FX trading.

Now, get yourself familiar with these very important currency pairs \rightarrow

Exchange rate: US \$ per Euro

Exchange rate: Japanese Yen per USD

Exchange rate: Swiss Francs per US\$

Exchange rate: US \$ per British Pound

Exchange rate: Danish Kroner per Euro

Exchange rate: Danish Kroner per US \$

Spot Rates and Forward Rates

- Spot rates are exchange rates for currency exchanges "on the spot", or when trading is executed at the moment.
- Forward rates are exchange rates for currency exchanges that will occur at a future ("forward") date.
\square Forward dates are typically 30, 90, 180, or 360 days in the future.
\square Rates are negotiated between two parties in advance, but the exchange take place on a future specified date.

Exchange Rate Quotations

Currencies

U.S.-dollar foreign-exchange rates in late New York trading

Country/currency	in US\$	per US\$	US\$ vs, YTD chg (\%)	Country/currency	in US\$	per US\$	US\$ vs, YTD chg (\%)
Americas				Europe			
Argentina p	. 3199	3.1260	2.2	Czech Rep. koruna*\% Denmark krone	. 04892	20.442	. 9
Brazil real	. 5427	1.8426	-13.7		. 1855	5.3908	4.6
Canada dollar	. 9552	1.0469	-10.2	Euro area euro	1.3801	. 7246	. 3
1-mos forward	. 9558	1.0462	-10.2	Hungary forint	. 005611	178.22	.4
3-mos forward	. 9568	1.0452	-10.1	Malta lira	3.2147	. 3111	4.3
6 -mos forward	. 9580	1.0438	-10.0		. 1745	5.7307	8.1
Chile peso	. 001943	514.67	-3.3	Poland zloty Russia ruble \ddagger	. 3668	2.7263	6.1
Colombia peso	. 0005224	1914.24	-14.5		. 03935	-25.413	-3.5
Ecuador US dolla	1	1	unch	Russia ruble: Slovak Rep köruna	. 04176	23.946	8.3
Mexico peso*	. 0930	10.7550	-0.4	Slovak Rep koruna Sweden krona	. 1502	6.6578	-2.7
Peru new sol	. 3168	3.157	-1.2	Sweden krona Switzerland franc	. 8285	1.2070	-1.0
Uruguay peso ${ }^{\dagger}$. 04220	23.70	-2.8		. 8306	1.2039	1.0
Venezuela bolivar	. 000466	2145.92	unch	1-mos forward 3-mos forward	. 8340	1.1990	0.8
Asia-Pacific				6-mos forward Turkey lira*\%	. 8391	1.1918	-0.7 -11.9
Australiandollar $\quad .8827$ 1.1329 -10.6				UK pound 1-mos forward	2.0578	. 4860	-4.8
Austrailan doliar	. 13822	7.5620	-10.6 -3.1		2.0568	. 4862	4.8
Hong Kong dollar	. 1279	7.8215	-3.1	1-mos forward 3-mos forward	2.0547	.4867	4.7
India rupee	. 02492	40.128	-9.0	3-mos forward 6-mos forward	2.0505	. 4877	4.5
Indonesia rupiah	. 0001102	9074	0.9	Middle East/Africa			
Japanyen	. 008250	121.21	1.9				
1-mos forward	. 008286	120.69	1.8				unch
$3-\mathrm{mos}$ forward	. 008347	119.80	1.9	Eqypt pound*	.1763	5.6725	-0.7
6-mos forward	. 008440	118.48	1.9	Israel shekel	. 2382	4.1982	-0.4
Malaysia ringgits	. 2934	3.4083	-3.4	Jordan dinar	1.4116	. 7084	-0.1
New Zealand dollar	. 8057	1.2412	-12.6	Kuwait dinar	3.4854	.2869	-0.8
Pakistan rupee	. 01653	60.496	-0.5	Lebanon pound	. 0006614	1511.94	unch
Philippines peso	. 0223	44.803	-8.6	Saudi Arabia riyal	. 2666	3.7509	unch
Singapore dollar	. 6629	1.5085	-1.6	South Africa rand	. 1468	6.8120	-2.6
South Korea won	. 0010927	915.16	-1.6	UAE dirham	. 2723	3.6724	unch
Taiwan dollar	. 03048	32.808	$\begin{array}{r} 0.7 \\ -15.8 \end{array}$	SDR \div			
Thailand baht	. 03350	29.851	-15.8		1.5358	. 6511	-2.0

*Floating rate \div Financial SुGovernment rate \ddagger Russian Central Bank rate $\approx \approx$ Rebased as of Jan 1, 2005 $\dagger \dagger$ ispecial Drawing Rights (SDR); from the International Monetary Fund; based on exchange rates for U.S., British and Japanese currencies.

Note: Based on trading among banks of $\$ 1$ million and more, as quoted at 4 p.m. ET by Reuters.

Source: Data from "Currencies," Wall Street Journal, July 24, 2007, p. C5.

An example of using currency forward contract to hedge currency risk

- In Sept. 2010, Fona, the electronics retailer in Denmark, will pay a US supplier in 30 days for a shipment arriving then. The shipment costs 1 million USD. During this period, the exchange rate (ER) between DKK and US dollar will fluctuate. Fona wants to hedge such currency risk.
- Say, for example, the current spot ER (as of 15.09 .2010) is 5.6 DKK per USD; and in 30 days, Danish Kroner depreciates to 6 DKK per USD, and the potential loss for Fona is $(6-5.6) \times 1 \mathrm{~m}=0.4$ m DKK or 400,000 DKK. This is not a small amount.

Example: Hedging currency risk using currency forward contract

- Fona could buy currency forward contract to lock in today's exchange rate:
\square Fona buys forward contract from Danske Bank at 5.625 DKK per US \$, the difference between 5.625 DKK and spot ER rate 5.6 DKK covers bank's expense and expected profit for writing the forward contract.
\square Then 30 days later, Fona converts DKK to US \$ at 5.6 DKK per US\$ as stipulated in the forward contract. The only extra cost to Fona is the cost of buying forward contract, which costs Fona $0.025 \times 1 \mathrm{~m}=25,000 \mathrm{DKK}$, but this cost is much smaller than the potential loss from currency depreciation, which is 400,000 DKK.
\square In other words, Fona transferred its current risk exposure to Danske Bank, and the bank will have to hedge its own currency risk too, through other means.

Exchange Rates and Asset Returns

- Transactions in FX market could be currency risk hedging related to international trade, such as the Fona's example.
- But there are other motives for people to trade currencies:
\square Carry Trade: people move money from one country to another because interest rates charged for bank deposits (or returns on financial assets, such as stocks and bonds) are different in different countries
\square Currency is usually volatile; it goes up and down. As such, people can also engage in short-term speculative trading on currencies based on their expectations of future currency movements (similar to stock market).

Exchange Rates and Asset Returns

- For the carry-traders, i.e., individuals or institutions that move money around to explore the interest rate differentials, the question they have to ask is: "what is my real rate of return in terms of local currency?":
\square The interest rate in Japan is 1%, while the interest rate in the US is 5%. So the interest rate differential is 4%. But this does not mean your real rate of return is 4%. Eventually you'll have to convert US $\$$ back to Yen to realize your return in \$ investment you were either a Japanese investor, or you borrowed money from a Japanese bank at lower interest rate.
\square When you convert \$ to Yen in the future, there is currency risk. You could lose money if the $\$$ depreciates against Yen more than 4%. However, you will make money if US \$ did not depreciate, or depreciates less than 4%, or even appreciate.

Exchange Rates and Asset Returns

For example:

The spot ER is 100 yen per USD on 01/01/2005, you borrow 1 million Yen at 1% interest from a bank in Japan and deposit in a US bank, earning 5\% interest.

The interest rate differential is:

$$
R_{U S}-R_{J P}=5 \%-1 \%=4 \%
$$

One year later (01/01/2006), you need to convert \$ back to Yen to pay back the Ioan from the Japanese bank, from which you borrowed money. At that day, the spot exchange rate changed to 95 Yen per USD, so the Yen had appreciated by $5 \%=(100-95) / 100$ in one year.

So your final real return is roughly $4 \%-5 \%=-1 \%$, or $-10,000$ Yen. You lost money!! :

But if the exchange rate changed to 98 Yen per USD on 01/01/2006, i.e., when Japanese Yen only appreciated by $2 \%=(100-98) / 100$, because $4 \%>2 \%$, you will still make money.

Interest Rates on Dollar and Yen Deposits, 1978-2007

Source: Datastream. Three-month interest rates are shown.

Two popular carry-trades compared

Growing Money

Daily turnover in foreign-exchange markets by currency pair, in billions of U.S. dollars

The Carry Trade Explained...

Borrow at low interest rates

Borrowing \$1m

THE CARRY TRADE

Invest in assets that yield a higher rate

$$
\$ 40,000
$$

Watch this nice video explaining to you what is carry trade:
http://www.ft.com/intl/cms/bee93552-b9b8-11de-a747-00144feab49a.swf

Interest Parity Condition

- The foreign exchange market is in equilibrium when deposits of all currencies offer the same expected rate of return.

$$
R=R^{*}+\left(E_{/ *}^{e}-E_{/ *}\right) / E_{/ *}
$$

R : interest rate in home country, R^{*} : interest rate in foreign country
$E_{F^{*}}^{e}$: expected future exchange rate of foreign currency in terms of home currency
$E_{/ *}$: spot exchange rate foreign currency in terms of home currency

- The above equation is called interest parity condition. When it holds, people (e.g. carry traders) have no incentives to move money across borders.
- In other words, if the parity condition does not hold, there are always arbitrage opportunities for people to make money. This is mostly the case in reality, especially in short term.

Interest Parity Condition

- We may rewrite the previous condition in the following form:

UIP vs. CIP

- Covered interest parity (CIP) relates to interest rates, forward exchange rates and the spot exchange rate:

$$
R_{\$}=R_{\epsilon}+\left(F_{\$ / \epsilon}-E_{\$ / \epsilon}\right) / E_{\$ / \epsilon},
$$

where $F_{\$ / \epsilon}$ is the forward exchange rate.

- To differentiate, the previous equation $R_{\Phi}=R_{\epsilon}+\left(E_{\$ / \epsilon}^{e}-\right.$ $\left.E_{\$ / \epsilon}\right) / E_{\$ / \epsilon}$ is called "uncovered" interest rate parity.
- The only difference is that covered interest parity replaces expected exchange rate in the equation with forward exchange rate. Since forward rate hedges currency risk (as in the Fona example), so we say the currency risk is "covered".

Derive the Equilibrium Exchange Rate

- Now we look at how change in today's exchange rate affect the expected return of a carry trade, with everything else unchanged.

Today's Dollar/Euro Exchange Rate and the Expected Dollar
Return on Euro Deposits holding that $E \mathrm{e} \$ / €=\$ 1.05$ per Euro

Today's Dollar/Euro Exchange Rate	Interest Rate on Euro Deposits	Expected Dollar Depreciation Rate Against Euro	Expected Dollar Return on Euro Deposits
$\boldsymbol{E}_{\$ / \epsilon}$	$\boldsymbol{R}_{\boldsymbol{\epsilon}}$	$\frac{\mathbf{1 . 0 5}-\boldsymbol{E}_{\$ / \epsilon}}{\boldsymbol{E}_{\$ / \epsilon}}$	$\boldsymbol{R}_{\boldsymbol{\epsilon}}+\frac{\mathbf{1 . 0 5}-\boldsymbol{E}_{\$ / \epsilon}}{\boldsymbol{E}_{\$ / \epsilon}}$
1.07		-0.019	0.031
1.05	0.05	0.00	0.05
1.03	0.05	0.019	0.069
1.02	0.05	0.029	0.079
1.00	0.05	0.05	0.10

Derive the Equilibrium Exchange Rate

The higher today's exchange rate of US dollar (in terms of US \$ per Euro), the lower expected dollar return on Euro deposits in the future.
The intuition behind it is at higher exchange rate (again in terms of \$ per Euro), your money in \$ today can exchange for less euros, so your starting level of \$ carry investment is lower.

Expected dollar return on
euro deposits, $R_{€}+\frac{E_{\$ / €}^{e}-E_{\$ / €}}{E_{\$ / €}}$

Equilibrium Exchange Rate

Equilibrium Exchange Rate

Equilibrium Exchange Rate

How exchange rate is determined under UIP?

How exchange rate is determined under UIP?

Under interest parity condition, a rise in euro return (or euro interest rate) shifts the euro expected return curve outward, and the new equilibrium moves from point 1 to 2 , and it implies an appreciation of the euro or depreciation of the dollar.

How exchange rate is determined under interest parity condition?

- The above analysis sounds logically perfect and quite intuitive
- But...
\square We haven't really talked about how Ee, $\$ / €$ will move during the process (we always assumed it stays as a constant);
\square And so far we also assumed as if investors can always sell/buy currencies immediately, at zero cost, and without any restrictions. The reality is quite different.
\square These factors make interest parity condition often not hold, at least in the short term

For the next class...

- See course website for required readings

